Scroll to navigation

dlags2.f(3) LAPACK dlags2.f(3)

NAME

dlags2.f

SYNOPSIS

Functions/Subroutines


subroutine dlags2 (UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV, CSQ, SNQ)
DLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel.

Function/Subroutine Documentation

subroutine dlags2 (logical UPPER, double precision A1, double precision A2, double precision A3, double precision B1, double precision B2, double precision B3, double precision CSU, double precision SNU, double precision CSV, double precision SNV, double precision CSQ, double precision SNQ)

DLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel.

Purpose:


DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such
that if ( UPPER ) then
U**T *A*Q = U**T *( A1 A2 )*Q = ( x 0 )
( 0 A3 ) ( x x )
and
V**T*B*Q = V**T *( B1 B2 )*Q = ( x 0 )
( 0 B3 ) ( x x )
or if ( .NOT.UPPER ) then
U**T *A*Q = U**T *( A1 0 )*Q = ( x x )
( A2 A3 ) ( 0 x )
and
V**T*B*Q = V**T*( B1 0 )*Q = ( x x )
( B2 B3 ) ( 0 x )
The rows of the transformed A and B are parallel, where
U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ )
( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ )
Z**T denotes the transpose of Z.

Parameters:

UPPER


UPPER is LOGICAL
= .TRUE.: the input matrices A and B are upper triangular.
= .FALSE.: the input matrices A and B are lower triangular.

A1


A1 is DOUBLE PRECISION

A2


A2 is DOUBLE PRECISION

A3


A3 is DOUBLE PRECISION
On entry, A1, A2 and A3 are elements of the input 2-by-2
upper (lower) triangular matrix A.

B1


B1 is DOUBLE PRECISION

B2


B2 is DOUBLE PRECISION

B3


B3 is DOUBLE PRECISION
On entry, B1, B2 and B3 are elements of the input 2-by-2
upper (lower) triangular matrix B.

CSU


CSU is DOUBLE PRECISION

SNU


SNU is DOUBLE PRECISION
The desired orthogonal matrix U.

CSV


CSV is DOUBLE PRECISION

SNV


SNV is DOUBLE PRECISION
The desired orthogonal matrix V.

CSQ


CSQ is DOUBLE PRECISION

SNQ


SNQ is DOUBLE PRECISION
The desired orthogonal matrix Q.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Definition at line 154 of file dlags2.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0