table of contents
dlags2.f(3) | LAPACK | dlags2.f(3) |
NAME¶
dlags2.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine dlags2 (UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU,
CSV, SNV, CSQ, SNQ)
DLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies
them to matrices A and B such that the rows of the transformed A and B are
parallel.
Function/Subroutine Documentation¶
subroutine dlags2 (logical UPPER, double precision A1, double precision A2, double precision A3, double precision B1, double precision B2, double precision B3, double precision CSU, double precision SNU, double precision CSV, double precision SNV, double precision CSQ, double precision SNQ)¶
DLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel.
Purpose:
DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such
that if ( UPPER ) then
U**T *A*Q = U**T *( A1 A2 )*Q = ( x 0 )
( 0 A3 ) ( x x )
and
V**T*B*Q = V**T *( B1 B2 )*Q = ( x 0 )
( 0 B3 ) ( x x )
or if ( .NOT.UPPER ) then
U**T *A*Q = U**T *( A1 0 )*Q = ( x x )
( A2 A3 ) ( 0 x )
and
V**T*B*Q = V**T*( B1 0 )*Q = ( x x )
( B2 B3 ) ( 0 x )
The rows of the transformed A and B are parallel, where
U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ )
( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ )
Z**T denotes the transpose of Z.
Parameters:
UPPER
UPPER is LOGICAL
= .TRUE.: the input matrices A and B are upper triangular.
= .FALSE.: the input matrices A and B are lower triangular.
A1
A1 is DOUBLE PRECISION
A2
A2 is DOUBLE PRECISION
A3
A3 is DOUBLE PRECISION
On entry, A1, A2 and A3 are elements of the input 2-by-2
upper (lower) triangular matrix A.
B1
B1 is DOUBLE PRECISION
B2
B2 is DOUBLE PRECISION
B3
B3 is DOUBLE PRECISION
On entry, B1, B2 and B3 are elements of the input 2-by-2
upper (lower) triangular matrix B.
CSU
CSU is DOUBLE PRECISION
SNU
SNU is DOUBLE PRECISION
The desired orthogonal matrix U.
CSV
CSV is DOUBLE PRECISION
SNV
SNV is DOUBLE PRECISION
The desired orthogonal matrix V.
CSQ
CSQ is DOUBLE PRECISION
SNQ
SNQ is DOUBLE PRECISION
The desired orthogonal matrix Q.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Definition at line 154 of file dlags2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |